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Scaling laws for the movement of people between locations in a large city
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Large scale simulations of the movements of people in a ‘‘virtual’’ city and their analyses are used to
generate insights into understanding the dynamic processes that depend on the interactions between people.
Models, based on these interactions, can be used in optimizing traffic flow, slowing the spread of infectious
diseases, or predicting the change in cell phone usage in a disaster. We analyzed cumulative and aggregated
data generated from the simulated movements of 1.63106 individuals in a computer~pseudo-agent-based!
model during a typical day in Portland, Oregon. This city is mapped into a graph with 181 206 nodes repre-
senting physical locations such as buildings. Connecting edges model individual’s flow between nodes. Edge
weights are constructed from the daily traffic of individuals moving between locations. The number of edges
leaving a node~out-degree!, the edge weights~out-traffic!, and the edge weights per location~total out-traffic!
are fitted well by power-law distributions. The power-law distributions also fit subgraphs based on work,
school, and social/recreational activities. The resulting weighted graph is a ‘‘small world’’ and has scaling laws
consistent with an underlying hierarchical structure. We also explore the time evolution of the largest con-
nected component and the distribution of the component sizes. We observe a strong linear correlation between
the out-degree and total out-traffic distributions and significant levels of clustering. We discuss how these
network features can be used to characterize social networks and their relationship to dynamic processes.
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I. INTRODUCTION

Scaling laws and patterns have been detected in a g
number of systems found in nature, society, and technol
Several common properties have been identified in netwo
of scientific collaboration@1–3#, movie actors@4#, cellular
networks @5,6#, food webs@7#, the Internet@8#, the World
Wide Web@9,10#, friendship networks@11#, and networks of
sexual relationships@12#. One such property is the short a
erage distance between nodes, that is, only a few edges
to be traversed in order to reach a node from any other n
Another common property is high levels of clustering@4,13#,
a characteristic absent in random networks@14#. Clustering
measures the probability that the neighbors of a node are
neighbors of each other. Networks with short average
tance between nodes and high levels of clustering have b
dubbed ‘‘small worlds’’@4,13#. Power-law behavior in the
degree distribution is another common property in many r
world networks@15#, that is, the probability that a randoml
chosen node has degreek decays asP(k);k2g with g typi-
cally between 2 and 3. Baraba´si and Albert~BA! introduced
an algorithm capable of generating networks with a pow
law connectivity distribution~g53!. The BA algorithm gen-
erates networks where nodes connect, with higher proba
ity, to nodes that have accumulated a higher number
connections and stochastically generates networks wit
power-law connectivity distribution in the appropriate sca

Social networks are often difficult to characterize beca
of the different perceptions of what a link constitutes in t
social context and the lack of data for large social netwo
of more than a few thousand individuals. Even though
tailed data on the daily movement of people in a large city
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not exist, these systems have been statistically sampled
the data have been used to build detailed simulations for
full population. The insights gained by studying the sim
lated movement of people in a virtual city can help guide
research in identifying what scaling laws or underlying stru
tures may exist and should be looked for in a real city. In t
paper we analyze a social mobility network that can be
fined accurately by the simulated movement of people
tween locations in a large city. We analyze the cumulat
directed graph generated from the simulated movemen
1.63106 individuals in or out of 181 206 locations during a
typical day in Portland, OR.~Fig. 1!. The 181 206 nodes rep

FIG. 1. Structure of the location-based network of the city
Portland. The nodes represent locations connected via dire
edges based on the traffic or movement of individuals~activities!
between the locations. The weights (wi j ) of the edges represent th
daily traffic from locationi to locationj.
©2003 The American Physical Society02-1
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resent locations in the city and the edges connections
tween nodes. The edges are weighted by daily traffic~move-
ment of individuals! in or out of these locations. The
statistical analysis of the cumulative network reveals that
a small world with power-law decay in the out-degree dis
bution of locations~nodes!. The resulting graph as well a
subgraphs based on different activity types exhibit sca
laws consistent with an underlying hierarchical structu
@16,17#. The out-traffic ~edge weights! and the total out-
traffic ~total weight of the out edges per node! distributions
are also fitted to power laws. We show that the joint dis
bution of the out-degree and total out-traffic distributio
decays linearly in an appropriate scale. We also explore
time evolution of the largest component and the distribut
of the component sizes.

Transportation Analysis Simulation System„TRANSIMS…

TRANSIMS @18# is an agent-based simulation model of t
daily movement of individuals in virtual region or city with
complete representation of the population at the level
households and individual travelers, daily activities of t
individuals, and the transportation infrastructure. The in
viduals are endowed with demographic characteristics ta
from census data and the households are geographically
tributed according to the population distribution. The tran
portation network is a precise representation of the ci
transportation infrastructure. Individuals move across
transportation network using multiple modes including c
transit, truck, bike, and walk, on a second-by-second ba
Records from the Department of Motor Vehicles~DMV ! are
used to assign vehicles to the households so that the resu
distribution of vehicle types matches the actual distributi
Individual travelers are assigned a list of activities for t
day ~including home, work, school, social/recreational, a
shop activities! obtained from the household travel activitie
survey for the metropolitan area@19#. ~Figure 2 shows the

FIG. 2. The number of people active in~a! work activities,~b!
school activities,~d! social activities, and~d! home activities as a
function of time~hours! during a ‘‘typical’’ day in Portland, Oregon
06610
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frequency of four activity types in a typical day.! Data on
activities also include origins, destinations, routes, timin
and forms of transportation used. Activities for itinerant tra
elers such as bus drivers are generated from real ori
destination tables.

TRANSIMS consists of six major integrated modules: pop
lation synthesizer, activity generator, router, microsimu
tion, and emissions estimator. Detailed information on e
of the modules is available@18#. TRANSIMS has been de-
signed to give transportation planners accurate, complete
formation on traffic impacts, congestion, and pollution.

For the case of the city of Portland, OR,TRANSIMS calcu-
lates the simulated movements of 1.63106 individuals in a
typical day. The simulated Portland dataset includes the t
at which each individual leaves a location and the time
arrival to its next destination~node!. These data are used t
calculate the average number of people at each location
the traffic between any two locations on a typical day.~Table
I shows a sample of a Portland activity file generated
TRANSIMS.! Locations where activities are carried out a
estimated from observed land use patterns, travel times,
costs of transportation alternatives. These locations are
into a routing algorithm that finds the minimum cost pat
that are consistent with individual choices@20–22#. The
simulation land resolution is of 7.5 ms. The simulator pr
vides an updated estimate of time-dependent travel times
each edge in the network, including the effects of congest
to theRouter and location estimation algorithms@18#, which
generate traveling plans. Since the entire process estim
the demand on a transportation network from census d
land use data, and activity surveys, these estimates can
be applied to assess the effects of hypothetical changes
as building new infrastructures or changing downtown pa
ing prices. Methods based on observed demand ca
handle such situations, since they have no information
what generates the demand. Simulated traffic patterns c
pare well to observed traffic and, consequently,TRANSIMS

provides a useful planning tool.

TABLE I. Sample section of aTRANSIMS activity file. In this
example, person 115 arrives for a social recreational activity
location 33 005 at 19.25 o’clock and departs at 21.00 o’clock.

Person
ID

Location
ID

Arrival
time

Departure
time

Activity
type

115 4225 0.0000 7.00 Home
115 49 296 8.00 11.00 Work
115 21 677 11.2 13.00 Work
115 49 296 13.2 17.00 Work
115 4225 18.00 19.00 Home
115 33 005 19.25 21.00 Social/rec
115 4225 21.3 7.00 Home
220 8200 0.0000 8.50 Home
220 10 917 9.00 14.00 School
220 8200 14.5 18.00 Home
220 3480 18.2 20.00 Social/rec
220 8200 20.3 8.6 Home
2-2
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Until recently, it has been difficult to obtain useful es
mates on the structure of social networks. Certain classe
networks ~scale-free networks@15#, small-world networks
@11,13#, or Erdös-Rényi random graphs@14,23#!, have been
postulated as good representatives. In addition, data b
models while useful are limited since they are naturally
cused on small scales@24#. While most studies on the analy
sis of real networks are based on a single snapshot of
system,TRANSIMS provides powerful time-dependent data
the evolution of a location-based network.

II. PORTLAND’S LOCATION-BASED NETWORK

A ‘‘typical’’ realization by the TRANSIMS simulates the
dynamics of 1.63106 individuals in the city of Portland as
directed network, where the nodes represent locations~i.e.,
buildings, households, schools, etc.! and the directed edge
~between the nodes! represent the movement~traffic due to
activities! of individuals between locations~nodes! ~Fig. 1!.
We have analyzed the cumulative network of the whole d
as well as cumulative networks that comprise different ti
intervals of the day. Here we use the term ‘‘activity’’ to d
note the movement of an individual to the location where
activity will be carried out. Traffic intensity is modeled b
the nonsymmetric mobility matrixW5(wi j ) of traffic
weights assigned to all directed edges in the network (wi j
50 means that there is no directed edge connecting nodei to
node j ).

III. POWER-LAW DISTRIBUTIONS

We calculate the statistical properties of a typical day
the location-based network of this virtual city from the c
mulative mobility data generated byTRANSIMS ~see Table II!.

Theaverage out-degreeis ^k&5( i 51
n ki /n whereki is the

degree for nodei andn is the total number of nodes in th
network. For the Portland network̂k&529.88 and theout-
degree distributionexhibits power-law decay with scalin
exponent~g'2.7!. Theout-traffic ~edge weights! and theto-
tal out-traffic ~edge weights per node! distributions are also
fitted well by power laws.

The average distancebetween nodes,L, is defined as the
median of the meansLi of the shortest path lengths connec
ing a vertexi PV(G) to all other vertices@25#. For our net-
work, L53.1, which is small when compared to the size
the network. In fact, thediameter Dof the graph~the largest

TABLE II. Statistical properties of Portland’s location-based
network ~cumulative over the whole day!.

Statistical properties Value

Total nodes~N! 181 206
Size of the largest component~S! 181 192
Total directed edges~E! 5416 005
Average out-degree (^k&) 29.88
Clustering coefficient~C! 0.0584
Average distance between nodes~L! 3.1
Diameter~D! 8.0
06610
of

ed
-

he

y
e

e

f

of all possible shortest paths between all the locations! is
only 8. L and D are measured using a breadth first sea
algorithm @26# ignoring the edge directions.

Theclustering coefficient Cquantifies the extent to which
neighbors of a node are also neighbors of each other@25#.
The clustering coefficient of nodei, Ci , is given by

Ci5uE~G i !uY S ki

2 D ,

whereuE(G i)u is the number of edges in the neighborho
of i ~edges connecting the neighbors ofi not including i
itself! and (2

ki) is the maximal number of edges that could
drawn among theki neighbors of nodei. The clustering co-
efficient C of the whole network isC5( i 51

n Ci /n. For a
scale-free random graph~BA model! @15# with 181 206
nodes andm516 @27#, the clustering coefficientCrand
'@(m21)/8#@(ln N)2/N#'0.0015@28,29#. The clustering co-
efficient for our location-based network, ignoring edge dire
tions, is C50.0584, which is roughly 39 times larger tha
Crand.

Highly clustered networks have been observed in ot
systems@4# including the electric power grid of western US
This grid has a clustering coefficientC50.08, about 160
times larger than the expected value for an equivalent r
dom graph@25#. The few degrees of separation between
locations of the~highly clustered! network of the city of
Portland ‘‘make’’ it a small world@13,11,25#.

Many real-world networks exhibit properties that are co
sistent with underlying hierarchical organizations. These n
works have groups of nodes that are highly interconnec
with few or no edges connected to nodes outside their gro
Hierarchical structures of this type have been character
by the clustering coefficient functionC(k), wherek is the
node degree. A network of movie actors, the semantic w
the World Wide Web, the Internet~autonomous system
level!, and some metabolic networks@16,17# have clustering
coefficients that scale ask21. The clustering coefficient as
function of degree~ignoring edge directions! in the Portland
network exhibits similar scaling at various levels of aggreg
tion that include the whole network and subnetworks co
structed by activity type ~work, school, and social
recreational activities, see Fig. 3!. We constructed subgraph
based on activity types, that is, those subgraphs constru
from all the directed edges of a specific activity type~i.e.,
work, school, social! during a typical day in the city of Port
land. The clustering coefficients of the subnetworks gen
ated from work, school, and social/recreational activities
the following: 0.0571, 0.0557, and 0.0575, respectively. T
largest clustering coefficient and the closest to the ove
clustering coefficient (C50.0584) corresponds to the sub
network constructed from social/recreational activities.
seems that the whole network, as well as the selected act
subnetworks, supports a hierarchical structure albeit the
ture of such a structure~if we choose to characterize by th
power-law exponent! is not universal. This agrees with re
evant theory@17#.
2-3
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Understanding the temporal properties of networks
critical to the study of superimposed dynamics such as
spread of epidemics on networks. Most studies of super
posed processes on networks assume that the contact
ture is fixed~see, for example, Refs.@30–38#!. Here, we take
a look at the time evolution of the largest connected com
nent of the location-based network of the city of Portla
~Fig. 4!. We have observed that a sharp transition occur
about 6 a.m. In fact, by 7 a.m. the size of the largest co
ponent includes'60% of the locations~nodes!. Table III
shows the size of the largest component just before and
the sharp transition occurs.

FIG. 3. Log-log plots of the clustering coefficient as a functi
of the out-degree for subnetworks constructed from work activit
school activities, social activities, and all the activities. The dot
line has slope21. Notice the scalingk21 for the school and social
recreational activities. However, for the subnetwork construc
from work activities, the clustering coefficient is almost indepe
dent of the out-degreek.

FIG. 4. The size of the largest component~cluster! over time. A
sharp transition is observed at about 6 a.m. when people move
home to work or school.
06610
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Let Xm(t) be the number of components of sizem at time
t. ThenX(t)5(m>1Xm(t) is the total number of component
at time t@Fig. 5~a!#. Furthermore, the probabilityP(m) that a
randomly chosen node~location! belongs to a component o
size m follows a power law that gets steeper in time as t
giant component forms@Fig. 5~b!#.

To identify the relevance of the temporal trends, we co
puted the out-degree distribution of the network for thr
different time intervals: the morning from 6 a.m to 12 p.m
the workday from 6 a.m. to 6 p.m.; and the full 24 h. In th
morning phase, the out-degree distribution has a tail that
cays as a power law withg.2.70 ~for the workdayg.2.43
and for the full dayg.2.40!. The distribution of the out-
degree data has two scaling regions: the number of locat
is approximately constant for out-degreek,20 and then de-
cays as a power law for high degree nodes~Fig. 6!. The
degree distribution for the undirected network~ignoring edge
direction! displays power-law behavior, but with slightly dif
ferent power-law exponents: 2.30~morning!, 2.48 ~work-
day!, and 2.51~full day!.

,
d

d
-

m

TABLE III. Size of the largest component just before and afte
a.m., the time at which a sharp transition occurs. At midnight,
but 14 locations belong to the largest component~Table II!.

Time Size of largest component

5.6 27 132
5.8 31 511
6.0 50 242
6.2 54 670
6.4 62 346
6.6 76 290
6.8 84 516
7.0 106 160

FIG. 5. ~a! The number of componentsX(t) between 4 a.m. and
8 a.m.~b! Probability distributionP(m) of the normalized compo-
nent sizes at two different times of the day. The component s
~m! have been normalized byS, the size of the largest component o
the cumulative network during the whole day~Table I!.
2-4
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The strength of the connections in the location-based
work is measured by the traffic~flow of individuals! between
locations in a ‘‘typical’’ day of the city of Portland. The
log-log plot of the out-traffic distributions for three differen
periods of time~Fig. 7! exhibits power law decay with ex
ponentsg.3.56 for the morning,g.3.74 for the workday,
and g.3.76 for the full day. The out-traffic distribution i
characterized by a power-law distribution for all values
the traffic-weight matrixW. This is not the case for the ou
degree distribution of the network~see Fig. 6! where a
power-law fits well only for sufficiently large degreek.

FIG. 6. Distribution of the out-degrees of the location-bas
network of the city of Portland. There are approximately the sa
number of nodes~locations! with out-degreek51,2, . . .,10. For
k.10 the number of nodes with a given out-degree decays
power lawP(k)}k2g with ~a! g.2.70 for the morning~6 a.m.–12
p.m.!, g.2.43 for the workday~6 a.m.–6 p.m.!, and~b! g.2.40 for
the full day.

FIG. 7. The out-traffic distribution of the location-based n
work of the city of Portland follows a power law@P(k)}k2g# with
~a! g'3.56 ~morning!, g'3.74 ~afternoon!, and ~b! g'3.76 ~full
day!. Hence a few connections have high traffic but most conn
tions have low traffic.
06610
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The distribution of the total out-traffic per location,wi ’s
@wi5( jwi , j #, is characterized by two scaling regions. T
tail of this distribution decays as a power law with expone
g52.74 ~Fig. 8!. This is almost the same decay as the o
degree distribution~g52.70! because the out-degree and t
total out-traffic are highly correlated~with correlation coef-
ficient r50.94!.

IV. CORRELATION BETWEEN OUT-DEGREE AND
TOTAL OUT-TRAFFIC

The degree of correlation between various network pr
erties depends on the social dynamics of the population.
systematic generation and resulting structure of these
works are important to understand dynamic processes s
as epidemics that ‘‘move’’ on these networks. Understand
the mechanisms behind these correlations will be usefu
modeling the fidelity networks.

In the Portland network, the out-degreek and total out-
traffic v have a correlation coefficientr50.94 on a log-log
scale with 95% of the nodes~locations! having out-degree
and total out-traffic less than 100~Fig. 9!; that is, the density
of their joint distributionF(k,v) is highly concentrated nea
small values of the out-degree and total out-traffic distrib
tions. The joint distribution supports a surface that dec
linearly when the density is in logarithmic scale~Fig. 10!.

V. CONCLUSIONS

Strikingly similar patterns on data from the movement
1.63106 individuals in a ‘‘typical’’ day in the city of Port-
land have been identified at multiple temporal scales
various levels of aggregation. The analysis is based on
mapping of people’s movement on a weighted directed gr
where nodes correspond to physical locations and where
rected edges, connecting the nodes, are weighted by

d
e

a

-

FIG. 8. Distribution of the total out traffic for the location-base
network of the city of Portland. There are approximately the sa
number of locations~nodes! with small total out traffic. The numbe
of locations where more than 30 people~approximately! leave each
day decays as a power law withg.2.74.
2-5
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CHOWELL et al. PHYSICAL REVIEW E 68, 066102 ~2003!
number of people moving in and out of the locations dur
a typical day. The clustering coefficient has been observe
scale approximately ask-1 ~k is the node degree! for suffi-
ciently largek. This scaling is consistent with that obtaine
from models that postulate underlying hierarchical structu
~few nodes get most of the action!. The out-degree distribu
tion in log-log scale is relatively constant for smallk but
exhibits power-law decay afterwards@P(k)}k2g#. The dis-
tribution of daily total out-traffic between nodes in log-lo
scale is flat for smallk but exhibits power-law decay after
wards. The distribution of the daily out-traffic of individua
between nodes scales as a power law for allk ~degree!.

The observed power-law distribution in the out-traf
~edge weights! is therefore, supportive of the theoretic
analysis of Yooket al. @39# who built weighted scale-free
dynamic networks and proved that the distribution of t
total weight per node~total out-traffic in our network! is a
power law where the weights are exponentially distribute

There have been limited attempts to identify at least so
characteristics of the joint distributions of network prope
ties. The fact that daily out-degree and total out-traffic d
are highly correlated is consistent again with the results
tained from models that assume an underlying hierarch
structure~few nodes have most of the connections and
most of the traffic~weight!!. The Portland network exhibits
strong linear correlation between out-degree and total
traffic on a log-log scale. We use this time series data to l
at the network ‘‘dynamics.’’ As the activity in the networ
increases, the size of the maximal connected componen
hibits threshold behavior, that is, a ‘‘giant’’ connected co

@1# M.E.J. Newman, Proc. Natl. Acad. Sci. U.S.A.98, 404~2001!.
@2# M.E.J. Newman, Phys. Rev. E64, 016131~2001!; 64, 016132

~2001!.
@3# A.-L. Barabási, H. Jeong, R. Ravasz, Z. Ne´da, T. Vicsek, and

FIG. 9. Correlation between the out-degree and the total
traffic. The correlation coefficient isr50.94 on a log-log scale
Most ~95%! of the locations have fewer than 100 people leav
during the day.
06610
to

s

.
e

-
a
-

al
t

t-
k

x-
-

ponent, suddenly emerges. The study of superimposed
cesses on networks such as those associated with
potential deliberate release of biological agents needs to
into account the fact that traffic is not constant. Planning,
example, for worst-case scenarios requires knowledge
edge traffic, in order to characterize the temporal dynam
of the largest connected network components@40#.
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